When selecting connecting devices and anchorage connectors, it is important to understand how to calculate potential fall clearance distance. Fall clearance distance is defined as the height at which a worker must attach to an anchorage to avoid contact with a lower level. (This is the worker's "safety zone.")

CALCULATING FALL CLEARANCE

 DISTANCE USING A SHOCK-ABSORBING LANYARD AND D-RING ANCHORAGE CONNECTORFirst, add up the length of the shock-absorbing lanyard (6 feet), the maximum elongation of the shock-absorbing lanyard during deceleration (3 1/2 feet) and the average height of a worker (6 feet).

Then, add a safety factor of 3 feet to allow for the possibility of an improperly fit harness, a taller-thanaverage worker and/or a miscalculation of distance.

The total, $181 / 2$ feet in this example, is the suggested safe fall clearance distance.

NOTE: Should the shock-absorbing lanyard be used in conjunction with a cross-arm anchorage connector or other, the additional length of the anchorage connector must be taken into consideration.

NOTE: Be sure to customize / fine-tune your measurements of line lengths and safe distance as appropriate for the specific worksite and worker.

NOTE: When using a retractable lifeline, the distance is calculated from the point where the retractable attaches to the back D-ring of the worker's harness.

NOTE: Be sure to customize / fine-tune your measurements of line lengths and safe distance as appropriate for the specific worksite and worker.

TIME AND FALL DISTANCE SUMMARY

Distance a person will travel during free fall at 9.8 meters $/$ second ${ }^{2}$ or 32 feet $/$ second 2.

Time (seconds)	Distance (feet)
0.5	4
1.0	16
2.0	64
3.0	160
4.0	257

Lessening the impact on the body

Falling any distance puts a certain amount of force or impact on your body - the amount of force felt increases with increased weight of the worker and/or increased distance of the fall. (In physics, this calculation is: Force $=$ Mass \times Acceleration.) So, the heavier you are and the farther you fall, the more impact you'll feel. (But it won't be near the impact of crashing onto a solid surface.)

Using a fall protection system adds to the calculation a third variable, one meant to lessen the impact felt from a fall. The components of a fall arrest system limit that force by using deacceleration devices in the harness and a self-retracting lifeline or lanyard attached to the anchor point. The fall protection components are designed to provide a cushion by slowly unravelling (commonly found lanyards) or catching and stopping a fall (self-retracting lifelines) to limit the falling distance - and to stop the fall well above the ground. Quality fall protection systems are designed to limit this force experienced to a maximum of 1,800 pounds, as required by ANSI and OSHA.

APPROXIMATE IMPACT LOAD ON THE BODY FALLING 6 FEET IN A FULL-BODY HARNESS USING VARIOUS LANYARDS:

Of this group of both traditional and modern lanyards, you would feel the least amount of impact or force if using a shock-absorbing lanyard.

Web lanyard (shock absorbing)	$900-980$ pounds
Web lanyard (not shock absorbing)	2,500 pounds
Rope	2,700 pounds
Steel cable	4,800 pounds

Maintained and used correctly, know that the force felt when a fall protection system stops your fall is always less than the force to be felt if you hit the ground or lower level.

